

## S.T.E.P.S. Building



Joseph Murray
Structural Option
Senior Thesis Presentation
The Pennsylvania State University
Advisor: Linda Hanagan

# **Building Statistics**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



- S.T.E.P.S.: Science, Technology, Environment, and Policy Building
- Education, laboratory, and research
- Owner: Lehigh University
- Location: Bethlehem, PA
- 5 story, 135,000 s.f. project
- 80' to roofline of Wing C
- Cost: \$62 million
- Construction: Aug. 2008 Aug. 2010

2

# **Building Statistics**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



Project Team:

CM: Alvin H. Butz

Architect: BCJ Architects

Structural: CVM Structures

Civil: Barry Isett & Assoc.

MEP/Fire: Flack & Kurtz

Landscape: Lager Raabe Skafte

Allentown, PA

Philadelphia

Oaks, PA

Trexlertown, PA

New York, NY

Philadelphia

# **Existing Floor Plans**

- Building Statistics
  - Existing Floor Plans
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



# Existing Structural System

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



- 3" roof deck with varying topping
- 3" composite floor deck with 4.5" topping
- W24 beams framing into W21 girders
- Beam spacing: 10'-8" on center
- Beam span: 42'-3"
- Girder span: 21'-4"
- LFRD: semi-rigid wind clips
- Columns: W14x90 up to W14x192
- Foundation: square footings

## Depth Proposal

#### Project Goals

Structural System

Building Statistics

- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

- 1. Analyze the existing floor system for vibration resistance with AISC Design Guide 11
- 2. Redesign the floor to allow for 400x microscopes at moderate walking speeds
- 3. Redesign the lateral system with full moment frames and braced frames
- 4. Design a typical moment connection in detail
- 5. Design a typical braced connection in detail

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



## Floor Design

- Floor vibration criteria were incorporated in design
- Laboratory and research sections designed for sensitive equipment
- Establish what equipment exist in the laboratories
- Design the floor for specific equipment

### Building Statistics

- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

## Floor Design

| Owner             | Building                           | Material | Criteria   | Opening     |
|-------------------|------------------------------------|----------|------------|-------------|
| Cornell           | Nanotechnology Laboratory          | RC       | 1000 œ"/s  | Fall 2003   |
| Harvard           | Institute of Medicine              | SS       | 2000 ot'/s | Summer 2005 |
| MIT               | Brain and Cognitive Science Center | SS       | 2000 œ"/s  | Spring 2005 |
| Duke              | Science Center                     | RC       | 2000 ot'/s | Fall 2006   |
| U. Chicago        | Interdivisional Research Center    | SS       | 750 od'/s  | Summer 2005 |
| U. Mass Worcester | Research Institute                 | SS       | 2000 ot'/s | Fall 2000   |

| Table 6.1<br>Vibration Criteria for Sensitive Equipment                                                                                                                                                              |                       |          |  |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------|--|--|--|--|--|--|--|--|
| Facility                                                                                                                                                                                                             | Vibrational Velocity* |          |  |  |  |  |  |  |  |  |
| Equipment<br>or Use                                                                                                                                                                                                  | (μ in./sec)           | (µm/sec) |  |  |  |  |  |  |  |  |
| Computer systems; Operating Rooms**; Surgery; Bench microscopes at up to 100x magnification;                                                                                                                         | 8,000                 | 200      |  |  |  |  |  |  |  |  |
| Laboratory robots                                                                                                                                                                                                    | 4,000                 | 100      |  |  |  |  |  |  |  |  |
| Bench microscopes at up to 400x magnification; Optical and other precision balances; Coordinate measuring machines; Metrology laboratories; Optical comparators; Microelectronics manufacturing equipment—Class A*** | 2,000                 | 50       |  |  |  |  |  |  |  |  |
| Micro surgery, eye surgery, neuro surgery; Bench microscopes at magnification greater than 400x; Optical equipment on isolation tables; Microelectronics manufacturing equipment—Class B***                          | 1,000                 | 25       |  |  |  |  |  |  |  |  |

#### Means & Methods

- AISC Design Guide 11: Floor Vibrations
   Due to Human Activity
- Chapter 6: Sensitive Equipment
- Based on natural frequency of floor
- Current floor allows for 100x magnitude microscopes at "slow walking"
- 2000 microinches/second was chosen as the design criterion at "moderate walking" pace

Upper image courtesy of E.M. Hines, Tufts University

3

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

# Floor Design



#### Impact of Redesign

- Beam spacing decreased from 10'-8" to 7'-11" on center
- Bay frequency rose from 3.7 to 5.3 Hz
  - Allows use of different equation
- Bay floor weight increased by 21 psf
  - Only in sensitive laboratories
- Floor depth could be increased
  - Move labs to one floor
- Columns could be moved to decrease span

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

# Lateral System





### **Moment Connection**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



#### Means & Methods

- Wind clips in N/S direction replaced with full moment connections
- AISC 14<sup>th</sup> Edition and AE 534 notes
- 2 rows of 7 moment frames
- $\blacksquare$  1.2D + .5L + .5S + 1.6W
- Portal method to distribute loads
- Frame analyzed for lowest story

### **Moment Connection**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



#### Details

- Flange Welded/ Web Bolted
- Flange Connection
  - Full penetration welds with backers
- Web Connection
  - 5/16" plate with (4) 3/4" A325-N bolts
- Column Reinforcement
  - Full depth 1/2" stiffeners required
  - (2) 3/4" doubler plates required

### **Moment Connection**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



Impact of Redesign

- Number of moment connections reduced
- Field welds limited in connection
- Column stiffening can be prefabricated
- A stronger column could eliminate stiffeners and doubler plates

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



#### Means & Methods

- Wind clips in E/W direction to be replaced with 5 braced frames
- AISC 14<sup>th</sup> Edition and AE 534 notes
- $\blacksquare$  1.2D + .5L + .5S + 1.6W
- Concentric braces initially selected
- Eccentric braces chosen due to span
- HSS 4x4x1/2 selected as brace

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



#### **Corner Brace Connection**

- 1/2" gusset plate with 30x6.5x12 dimensions
- HSS to Gusset: 3/16" field welds
- Gusset to Column: 2-L 4x4x3/8x6
  - 3/16" fillet welds to gusset
  - (2) 3/4" bolts to column
- Gusset to Beam: 3/16" fillet welds
- Beam to Column: L 5x3x1/2
  - 1/4" fillet weld to column
  - (3) 3/4" bolts to beam

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



#### Center of Beam Connection

- 1/2" gusset plate with 24x6.5x12 dimensions on both sides
- HSS to Gusset: 3/16" field welds
  - 12" minimum length
- Gusset to Beam: 3/16" fillet welds
  - 24" minimum length

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth



Impact of Redesign

- Wind clips were eliminated in the E/W direction of the building
- Field welds limited in connection
- Shorter brace spans could create more efficient braces
  - Would require adjusting interior columns
- Impact on lateral loads seen by foundations in these frames

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

## Electrical Breadth

| BRANCH CIRCUIT PANELBOARD SCHEDULE |                               |            |       |        |       |      |    |              |         |       |      |           |             |    |
|------------------------------------|-------------------------------|------------|-------|--------|-------|------|----|--------------|---------|-------|------|-----------|-------------|----|
| Тур                                | Typical Lab MOUNTING: SURFACE |            |       |        |       |      |    | MAINL        | UGSON   | LY    |      | 125       |             |    |
| 120/                               | 208V, 3 PHASE, 4 WIRE         |            |       |        | FLUSH |      |    | SHUNT        | TRIP MA | AIN   |      | 150       | AMPBUS      |    |
| 10                                 | ,000MIN A.I.C. SYM            |            |       |        | INMCC |      |    | FEED TI      | HRULUG  | iS    |      | GROUNDE   | Χ           |    |
| NEU                                | TRAL: 200%                    | <u>NUM</u> | BER O | F POLE | S:    | 42   |    |              |         |       |      | ISOLATED  | GROUND BUS: |    |
| СКТ                                | LOAD                          | TRIP       | KW    | PHAS   | E     | POLE | s  | KW / PHASE   |         |       | TRIP | LOAD      | скт         |    |
| No.                                |                               | (AMP)      | Α     | В      | С     |      |    | A B C        |         | (AMP) |      | No.       |             |    |
| 1                                  | FUME HOOD RM 191              | 20         | 1.80  |        |       | 1    | 2  | 1.80         |         |       | 20   | FUMEHOO   | DRM181      | 2  |
| 3                                  | FUME HOOD RM 191              | 20         |       | 1.80   |       | 3    | 4  |              | 1.80    |       | 20   | FUME HOO  | DRM 181     | 4  |
| 5                                  | FUME HOOD RM 191              | 20         |       |        | 1.80  | 5    | 6  |              |         | 1.80  | 20   | FUME HOO  | DRM181      | 6  |
| 7                                  | FUME HOOD RM 191              | 20         | 1.80  |        |       | 7    | 8  | 1.80         |         |       | 20   | FUME HOO  | DRM181      | 8  |
| 9                                  | FUME HOOD RM 191              | 20         |       | 1.80   |       | 9    | 10 |              | 1.80    |       | 20   | FUME HOO  | DRM181      | 10 |
| 11                                 | FUME HOOD RM 191              | 20         |       |        | 1.80  | 11   | 12 |              |         | 1.80  | 20   | FUME HOO  | DRM 181     | 12 |
| 13                                 | FUME HOOD RM 171              | 20         | 1.80  |        |       | 13   | 14 | 1.80         |         |       | 20   | FUME HOO  | DRM191A     | 14 |
| 15                                 | FUME HOOD RM 171              | 20         |       | 1.80   |       | 15   | 16 |              | 1.50    |       | 20   | ICE MAKER | 3           | 16 |
| 17                                 | FUME HOOD RM 171              | 20         |       |        | 1.80  | 17   | 18 |              |         | 0.50  | 20   | SPARE     |             | 18 |
| 19                                 | FUME HOOD RM 171              | 20         | 1.80  |        |       | 19   | 20 | 0.50         |         |       | 20   | SPARE     |             | 20 |
| 21                                 | FUME HOOD RM 171              | 20         |       | 1.80   |       | 21   | 22 |              | 1.80    |       | 20   | EXT. BLUE | LIGHTS      | 22 |
| 23                                 | FUME HOOD RM 171              | 20         |       |        | 1.80  | 23   | 24 |              |         |       | 20   | SPARE     |             | 24 |
| 25                                 | SPARE                         | 20         | 0.50  |        |       | 25   | 26 | 0.60         |         |       | 20   | SPARE     |             | 26 |
| 27                                 | SPARE                         | 20         |       | 0.50   |       | 27   | 28 |              | 0.60    |       | 20   | SPARE     |             | 28 |
| 29                                 | SPARE                         | 20         |       |        | 0.50  | 29   | 30 |              |         | 0.60  | 20   | SPARE     |             | 30 |
| 31                                 | SPARE                         | 20         | 0.50  |        |       | 31   | 32 |              |         |       | 20   | RM181GA:  | S SHUT OFF  | 32 |
| 33                                 | RM 191 GAS SHUT OFF           | 20         |       |        |       | 33   | 34 |              | 0.50    |       | 20   | EAV(5)    |             | 34 |
| 35                                 | SPARE                         | 20         |       |        |       | 35   | 36 |              |         |       | 20   | RM171GA:  | SSHUTOFF    | 36 |
| 37                                 | SIEMENS PANELS                | 20         |       |        |       | 37   | 38 |              |         |       | 20   | SPARE     |             | 38 |
| 39                                 | SPARE                         | 20         |       |        |       | 39   | 40 |              |         |       | 20   | SPARE     |             | 40 |
| 41                                 | SPARE                         | 20         |       |        |       | 41   | 42 |              |         |       | 20   | SPARE     |             | 42 |
|                                    | SUBTOTALS                     |            | 8.20  | 7.70   | 7.70  |      |    | 6.50         | 8.00    | 4.70  |      | SUBTOT    | ALS         |    |
|                                    | TOTAL LOADS                   | 14.7       | KVA   | PHA:   | SEA   |      |    | DEMAND FACTO |         |       | OR   | 65%       |             | 1  |
|                                    |                               | 15.7       | KVA   | PHA:   | SEB   |      |    | DEMAND LOAD  |         |       |      | 27.82     | KVA         |    |
|                                    |                               | 12.4       | KVA   | PHA:   | SEC   |      |    | LOAD X 1.25% |         |       |      | 34.78     | KVA         |    |
|                                    | TOTAL CONN. LOAD              | 42.8       | KVA   |        |       |      |    | AMP          |         |       |      | 96.60     |             |    |

#### Electrical System Details

- 1500 KVA Service Transformer
- 480 / 277V 3-Phase 4-Wire Secondary
   Feed to 3000-amp Distribution Panel
- 2 150 KVA Emergency Generators
- 277V T8, T5 and Compact Fluorescent Light Sources with Ballasts

- 18

## **Construction Breadth**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth





## **Construction Breadth**

- Building Statistics
- Structural System
- Depth Proposal
  - Floor Design
  - Lateral System
  - Moment Connections
  - Braced Connections
- Electrical Breadth
- Construction Breadth

|                           |                 | 03 | 2008 |           | 042 | :008    |           | Q12009 | 9 |         | 02200 | 9 |          | Q3 2009 | , | Q42009 |          | Q12010 | 1 |          | 022010 | 03               | 2010 |
|---------------------------|-----------------|----|------|-----------|-----|---------|-----------|--------|---|---------|-------|---|----------|---------|---|--------|----------|--------|---|----------|--------|------------------|------|
| Tark Name                 | Duration (days) |    |      | 08 Oct. 1 |     |         | oc. '08 J |        |   | Apr. '0 |       |   | July '04 |         |   |        | Jan. '10 |        |   | Apr. '10 |        |                  |      |
| OJECT START               | •               |    |      | 1         |     |         |           |        |   |         |       | - |          |         |   |        | <br>     |        |   |          | 7.2    | <br>             |      |
| OCUREMENT                 | 133             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| NGINEER SHORING           | 15              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ONCRETE APPROVAL          | 25              |    | 1    |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| STEEL FABRICATION         | 90              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| RICK                      | 75              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| OORDINATION DRAWING       | 60              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| WITCHGEAR                 | 154             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| HU'S                      | 126             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| HILLER                    | 140             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| PUMPS                     | 84              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ILITIES                   | 13              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| UNDATIONS                 | 115             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| HORING                    | 30              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| VINGC                     | 45              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| VINGB                     | 45              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| VINGA                     | 35              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| VATER PROOFING            | 20              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| PERIMETER DRAIN           | 15              |    |      |           |     | I       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| RUCTURE                   | 142             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| STEEL                     | 115             |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| SLAB ON METAL DECK        | 22              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| SLAB ON GRADE             | 42              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ROOF                      | 39              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| TERIOR                    | 140             |    |      |           |     | _       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| PENTHOUSE CONSTRUCTION    | 22              |    |      |           |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ROOF                      | 30              |    |      | _         |     | i_      |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| XTERIOR STUDS & SHEATHING | 75              |    |      | _         |     | _       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| BRICK                     | 100             |    |      | _         |     |         |           |        |   |         |       | _ |          |         |   |        |          |        |   |          |        |                  |      |
| VINDOWS                   | 100             | _  |      | _         |     | $\perp$ |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| 1ISC.STEEL                | 45              |    |      | -         |     |         |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ERIOR                     | 274             |    |      | -         |     | _       |           |        |   |         |       |   | _        |         |   |        |          |        |   |          |        |                  |      |
| TREPROOFING               | 50              | _  |      | +         | _   | -       | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| TUD CONSTRUCTION          | 65              | -  |      | -         |     | -       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| VALL FINISHES             | 199             |    |      | -         |     |         | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| ASEWORK/MILLWORK          | 150             |    |      | +         | _   | -       | -         |        |   |         |       |   |          |         |   |        | _        |        |   |          |        |                  |      |
| LOORFINISHES              | 65              | -  |      | +         |     | - !     | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| EILINGS                   | 140             | -  |      | -         | _   | -       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| 000RS                     | 140             |    |      | +         | _   |         | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| SATHROOM ACCESSORIES      |                 | -  |      | -         | -   | -       | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        | -                |      |
| NTERIOR CMU               | 45              |    |      | +         |     | -       | -         |        |   |         |       | _ | _        |         |   |        |          |        |   |          |        |                  |      |
| LEVATORS                  | 100             | ļ  |      |           |     |         |           | <br>   |   |         |       | 1 |          |         |   |        | <br>     |        |   |          |        | <br><del> </del> |      |
| CHANICAL & PLUMBING       | 240<br>130      | -  |      | -         |     | -       | -         |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| RINKLERS<br>ECTRICAL      | 303             |    |      | +         |     | -       |           |        |   |         |       |   |          |         |   |        |          |        |   |          |        |                  |      |
| OF TOP EQUIPMENT          | 20              |    |      | +         |     | -       |           |        |   |         |       | _ |          |         |   |        |          |        |   |          |        |                  |      |
| MMISSIONING               | 30              |    |      |           |     | - 1     |           |        |   |         |       | • |          |         |   |        |          |        |   | ۱ ۱      |        |                  |      |
| MELETION                  | 3.              |    |      | _         | _   | -       |           |        |   |         |       |   |          |         |   |        |          |        |   | 1        |        |                  |      |

|                 | <u>Start</u> | <u>Finish</u> |
|-----------------|--------------|---------------|
| Project Start:  | 8/2008       |               |
| Jtilities:      | 8/2008       | 8/2008        |
| Foundations:    | 9/2008       | 2/2009        |
| Superstructure: | 11/2008      | 6/2009        |
| Exterior:       | 4/2009       | 11/200        |
| nterior:        | 4/2009       | 4/2010        |
| Mech./Plumbing: | 4/2009       | 3/2010        |
| Electrical:     | 1/2009       | 5/2010        |
| Commissioning:  | 5/2010       | 7/2010        |
| Completion:     | 8/2010       |               |



# Acknowledgements

#### Advisors:

- Dr. Linda Hanagan
- Dr. Kevin Parfitt

#### Contacts:

- Ms. Patricia Chase Lehigh University
- Jeff Pritchford CVM Engineering
- Eric Holland Alvin Butz
- Family: Father, Mother, and Sisters

